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Ground state properties of a spin-3/2 model on a decorated
square lattice?
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Abstract. We present the construction of an optimum ground state for a quantum spin-3/2 antiferromag-
net. The spins reside on a decorated square lattice, in which the basis consists of a plaquette of four sites.
By using the vertex state model approach we generate the ground state from the same vertices as those
used for the corresponding ground state on the hexagonal lattice. The properties of these two ground states
are very similar. Particularly there is also a parameter-controlled phase transition from a disordered to
a Néel ordered phase. In the regime of this transition, ground state properties can be obtained from an
integrable classical vertex model.

PACS. 75.10.Jm Quantized spin models – 05.50.+q Lattice theory and statistics (Ising, Potts, etc.)

Various kinds of applications have emerged for the ma-
trix product and vertex state model techniques. These
methods can be used to construct exact ground states
for special Hamiltonians [1–4], exact stationary states for
stochastic models [5,6], and variational ground states for
generic Hamiltonians. The latter application is related
to the density matrix renormalization group (DMRG)
technique [7–11].

In [3] we have discussed the construction of an opti-
mum ground state for a spin-3/2 antiferromagnet on the
hexagonal lattice in detail. The ground state is given in
terms of a vertex state model which contains a continu-
ous parameter a. The calculation of ground state proper-
ties has been reduced to the solution of a two-dimensional
classical vertex model. The system exhibits a second or-
der quantum phase transition which is controlled by the
anisotropy parameter a. For a2 < a2

c , a2
c ≈ 6.46, correla-

tion functions decay exponentially, for a2 > a2
c they are of

Néel type. In the regime of the phase transition the classi-
cal vertex model can be reduced to a simpler, free-fermion
vertex model in good approximation.

For a quantum spin-3/2 antiferromagnet on the dec-
orated square lattice shown in Figure 1 a vertex state
model can be constructed which is completely analogous
to the one presented in [3]. An antiferromagnetic spin-
1/2 Heisenberg model on this lattice has been investigated
in [12]. The lattice shares the following properties with the
hexagonal lattice:
– It is bipartite, as indicated by the filled and unfilled

circles in Figure 1.
– The coordination number is 3.
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Fig. 1. The decorated square lattice. Each site of a regular
square lattice is replaced by a plaquette of four spin-3/2 sites.

Therefore we can place the same vertices as in [3] (see
Eq. (11) therein) on the lattice sites. This set of vertices
contains the abovementioned anisotropy parameter a ∈ R
and a discrete parameter σ = ±1. The global state |Ψ0〉
which is generated by these vertices is antiferromagnetic
in the sense that the sublattice magnetization vanishes for
all values of a and σ. It is an optimum ground state of the
Hamiltonian

H =
∑
〈i,j〉

hij , (1)

i.e. it is also a ground state of each local interaction oper-
ator hij . This nearest-neigbour interaction is exactly the
same as in the hexagonal lattice case1.

1 It is constructed such that it annihilates all concatenations
of adjacent vertices.
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Fig. 2. Probability p↓↑ for finding an antiparallel arrow pair on
a bond within a plaquette (solid) and between two plaquettes
(dashed).

In order to calculate properties of the vertex state
model we investigate the inner product 〈Ψ0|Ψ0〉. As ex-
plained in [3] this inner product is given by the partition
function of a classical vertex model with two arrow vari-
ables between each pair of adjacent sites. Motivated by the
results on the hexagonal lattice we have measured numer-
ically the probability p↓↑ for finding an antiparallel arrow
pair on a bond. As shown in Figure 2, p↓↑ decays exponen-
tially as a function of a2, but for bonds within a plaquette
the decay is slower than between two plaquettes. Numer-
ically we have also found a second order phase transition
at a2

c ≈ 7.0. In this regime p↓↑ ≈ 0.002, hence we neglect
all vertices with antiparallel arrow pairs in the following
consideration, i.e. we reduce the model to a vertex model
with only eight different classical vertices at each site.

The next step is to sum out the four interior bonds
on each plaquette, which yields a 16-vertex model on the
square lattice. The vertex weights are invariant under a
simultaneous flip of all four arrows, i.e. the model is field-
free. Thus we can transform this 16-vertex model to an
8-vertex model by attaching the orthogonal 2× 2-matrix

u =
1√
2

(
1 1
1 −1

)
(2)

to each bond. If the usual notation for the 8-vertex model
is used, the resulting vertex weights are

ω1 = 1
2

(
41 + 52 a2 + 30 a4 + 4 a6 + a8

)
ω2 = 1

2

(
−1 + a2

)4
ω3 = ω4 = − 1

2

(
−1 + a2

)3 (3 + a2
)

ω5 = ω6 = 1
2

(
−1 + a2

)2 (5 + 2 a2 + a4
)

ω7 = ω8 = − 1
2

(
−1 + a2

)2 (5 + 2 a2 + a4
)
.

(3)

As in the case of the corresponding model on the hexago-
nal lattice, these weights fulfil the free-fermion condition

ω1ω2 + ω3ω4 = ω5ω6 + ω7ω8 (4)

for all values of a, i.e. the model is exactly solvable.
In order to determine the phase transition point(s) of

the model we investigate directly the general partition
function of a free-fermionic 8-vertex model given in [13]

lnZ =
1

8π2

∫ 2π

0

∫ 2π

0

ln [2p+ 2q1 cos θ + 2q2 cosφ

+2q3 cos(θ − φ) + 2q4 cos(θ + φ)] dθ dφ,

(5)

where
p = 1

2 (ω2
1 + ω2

2 + ω2
3 + ω2

4)
q1 = ω1ω3 − ω2ω4

q2 = ω1ω4 − ω2ω3

q3 = ω3ω4 − ω7ω8

q4 = ω3ω4 − ω5ω6.

(6)

In case of our special set of vertex weights we have q1 = q2
and q3 = q4. This simplifies the partition function to

lnZ =
1

8π2

∫ 2π

0

∫ 2π

0

ln[2p+ 2q1(cos θ + cosφ)

+ 4q3 cos θ cosφ]dθ dφ. (7)

As explained in [13] the θ-integration can be performed
by rewriting (7) in the following form

lnZ =
1

8π2

∫ 2π

0

∫ 2π

0

ln [2A+ 2B cos θ] dθ dφ (8)

=
1

4π

∫ 2π

0

ln
[
A+

√
Q(φ)

]
dφ, (9)

where

A = p+ q1 cosφ, B = q1 + 2q3 cosφ, Q(φ) = A2 −B2.
(10)

Now we can follow the argument given in [13]. By explic-
itly calculating the function Q(φ) in terms of the model
parameter a we observe that it is not a complete square,
so (9) is analytic unless

Q(φ) = 0. (11)

The only real non-negative solution of this equation is

φc = 0 and a2
c = 1 +

√
2 +

√
2(5 + 4

√
2) ≈ 7.03.

(12)

This is consistent with our numerical result.
The phase transition is of the same type as in [3]. It

corresponds to two simultaneous Ising transitions from a
disordered phase (a2 < a2

c) with exponentially decaying
correlation functions to a Néel ordered phase (a2 > a2

c)
with alternating long-range correlations.

In summary we have applied the vertex state model
approach to a spin-3/2 antiferromagnet on a decorated
square lattice. The local interaction and the vertices used
for the vertex state model are the same as those used in [3]
on the hexagonal lattice. As a function of the anisotropy
parameter the resulting global ground state exhibits a sec-
ond order transition from a disordered phase to a Néel
ordered phase. The phase transition corresponds to two
simultaneous Ising transitions.
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